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SUMMARY

The three-dimensional transient free-surface �ow inside cavities of arbitrary shape is examined in
this study. An adaptive (Lagrangian) boundary-element approach is proposed for the general three-
dimensional simulation of con�ned free-surface �ow of viscous incompressible �uids. The method is
stable as it includes remeshing capabilities of the deforming free-surface, and thus can handle large de-
formations. A simple algorithm is developed for mesh re�nement of the deforming free-surface mesh.
Smooth transition between large and small elements is achieved without signi�cant degradation of the
aspect ratio of the elements in the mesh. The method is used to determine the �ow �eld and free-surface
evolution inside cubic, rectangular and cylindrical containers. These problems illustrate the transient na-
ture of the �ow during the mixing process. Surface tension e�ects are also explored. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �ow inside a cavity is of direct relevance to mixing, in particular lid-driven cavity �ow.
Besides its fundamental importance, this �ow has been often examined as a benchmark prob-
lem for laminar and turbulent �ows to test proposed numerical simulation schemes. However,
almost all problems solved were limited to con�ned two-dimensional steady �ow. Only a few
have tackled the three-dimensional �ow using direct numerical simulation [1–5], and analyt-
ical techniques for Stokes �ow only [6, 7]. In this study, the Stokes �ow �eld is determined
in the presence of a free surface, as typically encountered in open mixers. The study focuses
on the transient response after inception. In particular, the evolution of the free surface will
be monitored as the surface deforms under the action of �ow.
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The numerical simulation of transient free-surface �ow problems remains challenging de-
spite the advent of powerful techniques. Several numerical techniques have been developed
for the solution of moving boundary/initial value problems. These techniques may be classi-
�ed as Eulerian, Lagrangian and mixed Eulerian–Lagrangian [8]. In the Eulerian descrip-
tion of the �ow, the grid points remain stationary or move in a predetermined manner
[9–12]. Typically, the �uid moves in and out of the computational cells. The method can
handle arbitrarily large free-surface deformations without loss of accuracy. Its main disad-
vantage, however, is the lack of sharp de�nition of the free surface, and the consequent
di�culty to impose the kinematic and dynamic boundary conditions on the free surface.
In the Lagrangian approach, the grid points move with local �uid particle [13, 14]. The
free surface is sharply de�ned and it is easy to impose the necessary boundary condi-
tions. However, Lagrangian methods require mesh re�nement or remeshing for large de-
formations of the free surface. Hybrid methods have also been developed that combine the
advantages of the Eulerian and Lagrangian methods [15]. Generally, an adaptive Lagrangian
approach becomes di�cult to implement when a volume method such as the �nite-element
method (FEM) is used. On the other hand, the boundary-element method (BEM) is much
easier to use along with adaptive remeshing as the dimension of the problem is reduced
by one.
The BEM relates velocities at points within the �uid to the velocity and stress on the

bounding surfaces. It is thus an ideal method for studying moving-boundary problems where
the velocity on the free surface is the quantity of prime interest. The advantages of the BEM
include: reduction of problem dimensionality, direct calculation of the interfacial velocity,
the ability to track large surface deformations, and the potential for easy incorporation of
interfacial tension as well as other surface e�ects. The BEM has recently been applied to
a variety of problems of the moving-boundary type. Such problems include the deformation
of a drop in a con�ned medium [16–21], conventional and gas-assisted injection molding
[22, 23], air venting during blow molding and thermoforming [24], and the transient mixing of
Newtonian and viscoelastic �uids [25, 26]. The present work addresses the numerical solution
of a class of moving-boundary problems in a con�ned medium of the free-surface type.
An adaptive Lagrangian boundary-element approach is adopted to determine the evolution
of the free surface. The formulation and numerical implementation are illustrated for a �ow
advancing inside and exiting a con�ning cavity.
A simple algorithm for adaptive re�nement of the (two-dimensional) triangular mesh of

the free surface is implemented. A number of algorithms for adaptive generation of triangular
meshes have been proposed before. Some methods generate entirely new meshes [27, 28],
others subdivide elements of an initial mesh [29, 30], and still others can both generate new
meshes and subdivide the meshes adaptively [31]. A comprehensive survey of automatic
mesh generation algorithms is given by Sheppard [32]. In the present study, the initial mesh
is assumed to be regular so that no initial mesh re�nement is needed. As the free surface
evolves with time, the triangular elements grow and become distorted. Beyond a prescribed
level of distortion, an element is subdivided into two elements. Additional nodes are added
only at the mid-side of the longest edge of the element. This method ensures the preservation
of a good aspect ratio for the elements in the mesh. Rivara has implemented this method
[30], but his procedure requires a search process to repair any incompatibilities that may
be generated. Dow and Byrd also employed this approach in the re�nement of regions with
simple rectangular boundaries [33].

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1021–1051



3D TRANSIENT FREE SURFACE FLOW INSIDE CAVITIES 1023

The paper is organized as follows. The problem formulation is presented in Section 2, where
basic equations and boundary conditions are covered. The solution procedure, including the
time-marching scheme, adaptive meshing of the free surface, determination of local curvature,
and the contact problem are discussed in Section 3. Numerical assessment and results are
covered in Section 4. Finally, some concluding remarks are given in Section 5.

2. PROBLEM FORMULATION

In this section, the governing equations, domain description and boundary conditions are re-
viewed together with some of the assumptions taken for the moving-boundary �ow of viscous
incompressible Newtonian �uids. Only low-Reynolds-number �ows, typically characterized by
small velocities, small length scales and/or high viscosity, will be considered. In this limit, the
inertia terms in the momentum equation are negligible, so the �ow is in a state of creeping
motion. The formulation is thus limited to Stokes �ow.

2.1. Governing equations

Consider the �ow of a �uid of density �, viscosity �, and surface tension coe�cient �. At any
instant, t, the �uid is assumed to occupy a three-dimensional region, �(t), which is bounded
by �(t). It is convenient to take �(t) as the inner domain, excluding �(t). Thus, �(t)∪�(t)
constitutes the domain occupied by the �uid. The �uid is taken to be neutrally buoyant so
the e�ects of gravity and any external body forces are negligible. The conservation of mass
and linear momentum equations are given by

∇ · u(x; t) = 0; ∇ · �(x; t) = 0; x ∈ �(t)∪�(t) (1)

where ∇ is the gradient operator, x is the position vector, u(x; t) is the velocity vector, and
�(x; t) is the total stress tensor given in terms of the hydrostatic pressure p(x; t) and excess
stress tensor �(x; t). Here �(x; t)= − p(x; t)I + �(x; t), where I is the identity tensor. In the
present study, the �uid is assumed to be Newtonian, so that

�(x; t)=��∇u(x; t) +∇uT(x; t)� x∈�(t)∪�(t) (2)

where � is the viscosity of the �uid. The superscript T denotes the transpose of the matrix. It
is important to note that the acceleration term @u=@t in the momentum conservation equation
has been neglected, so that for a Newtonian �uid, the formulation in question is not strictly
unsteady, but quasi-steady. This quasi-steady state assumption is valid whenever L2=��T ,
where L and T are typical characteristic length and time of the �ow, and �=�=� is the
kinematic viscosity (� being the density). In the case of cavity �ow, T∼L=U , U being a
typical value of the driving velocity. Thus, for the quasi-steady state assumption to apply, one
must have UL=��1. This is indeed typically the case for �uids of interest to mixing. Note
also that this inequality is implied by the smallness of the Reynolds number. Physically, the
quasi-steady state approximation means that a Newtonian �uid immediately adjusts to changes
in the movement of the boundary or boundary conditions.

2.2. Domain of computation of the free-surface-�ow problem

There are various classes of free-surface �ow problems that can be considered by the proposed
formulation, with direct relevance to polymer processing. Most notable examples are conven-
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Figure 1. Schematic illustration of transient free-surface �ow inside a cavity of arbitrary shape.

tional and gas-assisted injection molding, coating, extrusion, thermoforming, blow molding
and mixing. These problems may be conveniently divided into two categories: continuous and
discrete �ows. A continuous �ow involves the growth of a domain as a result of an extended
in�ux of �uid over a period of time, such as during injection molding and extrusion. In con-
trast, a discrete �ow is induced by the action of an external force, usually pressure or the
velocity at the boundary, which acts on a given and constant amount of �uid, such as during
gas-assisted injection molding, thermoforming, blow molding and mixing. Figure 1 illustrates
typically the mixing process inside a partially �lled cavity of arbitrary shape. In this case, the
�ow is assumed induced by the translation of part of the boundary. The boundary, �(t), in
Figure 1 is composed, at any time, of the wetted part of the cavity, �w(t), and the moving
free surface, �f (t). The wetted part of the cavity depends on time since it changes with the
movement of the �uid that is in contact with the wall. The overall boundary may thus be
expressed as �(t)=�w(t)∪�f (t).

2.3. Boundary and initial conditions

The velocity is assumed to be fully prescribed on the wetted part of the boundary. In this
study, and as indicated in Figure 1, the �ow is assumed to be induced by the steady movement
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of the lower part of �w(t). The �uid is assumed to adhere to the cavity boundary, so that stick
and no-penetration boundary conditions apply on the wetted part of the cavity. Generally, one
has

u(x; t)= uw(x); x∈�w(t) (3)

where uw(x) is zero at the stationary parts of �w(t).
The dynamic condition on the free surface is based on the continuity of the tangential stress

and discontinuity of normal stress caused by the interfacial tension:

t(x; t) = �n(x; t)∇ · n(x; t); x∈�f (t) (4)

Here t(x; t) = �(x; t) · n(x; t) is the traction, n is the normal unit vector at �f (t). Note that
boundary condition (4) is derived under conditions of equilibrium and uniform interfacial
tension. Its validity under dynamic conditions is simply assumed [34, 35]. The condition also
assumes implicitly that the �ow activity of the �uid outside the moving boundary (air) is
negligible with the (atmospheric) pressure taken as zero.
The proper choice and implementation of a kinematic condition is generally not obvious,

especially from a numerical standpoint [8]. This condition relates the evolution of the mov-
ing boundary to the local velocity �eld. The moving boundary deforms in accord with the
instantaneous velocity �eld, thus determining new moving boundary positions with time. In
the present Lagrangian representation, the moving boundary may be assumed to deform with
the �uid velocity, such that the evolution of �f (t) is governed by the equation

dx
dt
= u(x; t); x∈�f (t) (5)

Although easy to implement, the resulting scheme based on Equation (5) tends to sweep points
on the moving boundary along the tangent to the moving boundary, even if only small shape
changes take place. Consequently, frequent redistribution of the moving boundary points or
remeshing becomes necessary. Alternatively, the moving boundary can be assumed to deform
pointwise along the normal with the normal projection of the �uid velocity at the moving
boundary [8]. This method keeps the points evenly distributed on the moving boundary. Thus,
the following kinematic boundary condition results:

dx
dt
= n(x; t)[n(x; t) · u(x; t)]; x∈�f (t) (6)

Unlike Equation (5), the above equation prevents the nodes to be swept along the tangent
to the moving boundary. However, it leads to numerical instability of the saw-tooth type.
This di�culty is usually circumvented by applying a smoothing technique of the discretized
surface. Given the remeshing capabilities of the present approach, the use of Equation (6)
turned out to be the good choice for the class of problems covered in this study.
As to the initial conditions, the �uid is assumed to be at rest initially, and the following

condition is used:

u(x; t=0)≡ 0; x∈�(t=0)∪�(t=0) (7)

Thus, the �ow �eld is determined through the solution of Equations (1) and (2) subject to
initial condition (7) and the boundary conditions above, using the boundary-integral method.
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2.4. Boundary integral equation

The general time-dependent integral equation for a moving domain is given by [36]:∫
�(t)
t(y; t) · J(x|y) d�y −

∫
�(t)
n(y; t) · u(y; t) ·K(x|y) d�y

= c(x; t) · u(x; t); x∈�(t)∪�(t) (8)

Here J and K are the usual symmetric and anti-symmetric tensors with respect to r=x − y,
and are given as [36]:

J(x|y) = − 1
8�

(
I
r
+
rr
r3

)
; K(x|y) = − 3

4p
rrr
r5

(9)

where r= |r|. The function c(x; t), for x∈�(t), depends on the geometrical form of the
boundary; its value arises from the jump in the value of the velocity integrals as the boundary
is crossed. Note that c(x; t)=0 for x∈�(t). When the boundary is Lyapunov smooth, which
requires that a local tangent to the free surface exists everywhere, the function c(x; t)= 1

2 .
This is the case if constant boundary elements are used. Thus, the assumption of boundary
smoothness is generally not valid in the vicinity of sharp corners, cusps or edges. In general,
since c(x; t) depends solely on geometry, it may be evaluated assuming that a uniform velocity
�eld such as u(x; t)= ue is applied over the boundary, e being the direction of the velocity and
u is its magnitude. Under these conditions, all derivatives (including tractions and stresses)
must vanish. Hence, at any time t, Equation (8) reduces to

c(x; t)=−
∫
�(t)
n(y; t) · [e ·K(x|y) · e] d�y; x∈�(t) (10)

Thus, at any time t, the form of the boundary �(t) is determined, and the function c(x; t) is
evaluated using the equation above.

3. SOLUTION PROCEDURE

In this section, a time-marching scheme is proposed to discretize Equation (6). Once the
�ow �eld is determined at a given time step from Equation (8), the location of the moving
boundary can be determined by solving Equation (6). As the boundary elements are distorted,
the mesh is re�ned through element subdivision. The problem of contact between evolving
moving boundary and surrounding cavity walls is �nally discussed.

3.1. Time-marching scheme and moving boundary evolution

Consider now the application of the integral Equation (8) for a point on the boundary, that
is, for x∈�(t). The �ow �eld at any interior point x∈�(t) is obtained once the velocity and
traction at the boundary are known. Since the velocity is fully prescribed on �w(t), only the
traction (or stress) will be determined there. The traction is imposed on the moving boundary,
�f (t), where the value of the velocity will be found. More explicitly, Equation (8) may be

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1021–1051



3D TRANSIENT FREE SURFACE FLOW INSIDE CAVITIES 1027

rewritten as∫
�w(t)

t(y; t) · J(x|y) d�y −
∫
�f (t)

u(y; t) · [n(y; t) ·K(x|y)] d�y

+�
∫
�f (t)
[n(y; t)∇ · n(y; t)] · J(x|y) d�y +

∫
�w(t)

uw(y) · [n(y) ·K(x|y)] d�y

=

{
c(x; t)uw(x); x∈�w(t)
c(x; t)u(x; t); x ∈ �f (t)

(11)

where conditions (3) and (4) are used. The unknowns in Equation (11) are thus t(x∈�w; t)
and u(x∈�f ; t), so that the values of the third and fourth integrals on the left-hand side are
known.
The time derivative in Equation (6) is approximated by an explicit Eulerian �nite-di�erence

scheme, with higher-order terms in the time increment, �t, being neglected. The integral
Equation (11) relates the velocity and traction at the current time. Once the �ow �eld is
determined at each time step, t, the position of the moving boundary is updated. The evolution
of �f (t) is dictated by Equation (6). The updated position of the nodes that belong to the
moving boundary is thus determined once the velocity at the moving boundary is obtained
from the solution of Equation (11).
The integrals in Equation (11) are discretized into a �nite sum of contributing terms over

the boundaries. In this work, the boundary elements are assumed to be geometrically linear so
that the velocity and traction are constant over each element. This makes the proposed adaptive
remeshing method and estimation of curvature less di�cult to implement since no interpolation
of the �ow variables is needed at each time step. The use of higher-order elements is possible,
but may not be crucial given the mesh re�nement and remeshing capabilities involved in the
current procedure. The traction is constant over �at linear element, and is multiply valued
at a corner node if higher-order elements are used. In two dimensions, the traction may be
assumed to be double valued at every node of a curved boundary. Another advantage of the
constant boundary element is that the value of c(x; t) is always and everywhere equal to 1=2.
In addition, the normal vector to each element is determined exactly.

3.2. Adaptive meshing

A simple algorithm is proposed for adaptive re�nement of the triangular mesh of the evolving
free surface. The method is similar to that proposed by Nambiar et al. [37] for adaptive and
h re�nement of 2D triangular �nite-element meshes. Initially (t¡0), the �uid is assumed to
occupy a 3D region, �0 =�(t=0), bounded by the cavity walls and free surface. Typically,
at t¿0, some elements become too distorted, and mesh re�nement or remeshing is needed
as a result of surface deformation. The re�nement is carried out by subdividing the elements
that are too distorted. Generally, the criteria for subdivision are based on the element area
and the length of the edges. However, it turns out that the length of the longest edge is a
reliable criterion by itself. In this case, at each time step of the �ow, a list of elements is
established, with the length of the longest edge greater than an imposed tolerance, Dmax. The
list is sorted in the order of increasing length of the longest edges of each element. In order to
avoid generating mesh incompatibilities or elements with poor aspect ratio during re�nement,
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Figure 2. Adaptive meshing and subdivision of free-surface elements. The �gure shows the subdivision
of a typical internal element (a), and an element on the edge (b).

larger elements are subdivided �rst. The subdivision starts from the last (i.e. the longest edge)
element in the list, and is continued recursively until the list is empty. The subdivision is
carried out by bisecting the largest of the edges of the element in the list.
Two distinct cases of element subdivision arise, which are illustrated in Figure 2. The �gure

displays the subdivision process for a 3D surface that has expanded. In the �rst case (Figure
2(a)), an element inside the domain (e.g. elements 9 and 21) is subdivided, and in the second
case (Figure 2(b)), the element has an edge on the boundary of the domain (element 14).
In the latter case, the subdivision process is straightforward. Once the subdivision criteria
are reached, the element is simply subdivided into two elements. This is typically illustrated
in Figure 2(b) for element 14, which is subdivided into elements 14 and 28. In the former
case, the edge of the element is in the interior, and additional options must be considered. To
prevent creation of any non-conforming interior elements, the element that shares the common
longest edge is also bisected along with the �rst element. Creation of four elements in such
a manner is carried out only when the bisected edge is the longest edge of both elements. If
this condition is not met, the second element is added to the end of the element list, which
contains the distorted elements so that the second element is now the current element for
subdivision and the process is repeated. Again, the element selected for subdivision will have
an edge that is the longest among the edges of the elements in the list.
In order to facilitate the search for the second element and the longest edge of elements, the

input data are initially processed to create three data structures, one structure for the nodes,
one for the triangles and one for the edges. A node is de�ned by its x-, y- and z-co-ordinate.
The properties selected for a triangle are its three nodes, A, B and C, its three edges, AB,
BC and CA, and its area. The above information is structured such that the node numbers are
ordered in counterclockwise direction for each element and edge AB is the longest edge of
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each element. The properties of an edge are its two end nodes, its two neighbouring triangles,
and the length of the edge.
The major advantage of dividing only the largest edge in a triangle is that the smallest angle

in the original mesh is not further subdivided. If the largest angle C is greater than 90◦, none
of the newly created angles can be smaller than the original smallest angle A. If C is equal
to 90◦, the smallest angle A is duplicated as D. If, however, C is smaller than 90◦, the newly
created angle D is slightly smaller than A. Further, if an angle A is smaller than 60◦, it will
never be bisected using this algorithm. Rosenberg and Stenger have shown that the smallest
angle that can be created in any subsequent mesh produced by the above method is bounded
by half the minimum angle present in the initial mesh [38]. Thus, the aspect ratio of the
triangles in the mesh remains in an acceptable and known range. The process of subdivision
shown in Figure 2(a) illustrates the general sequence of mesh re�nement. Elements 7 and 9
are �rst subdivided each into two triangles; element 7 is now divided into the current elements
7 and 24, while element 9 is divided into one triangle composed currently of 25 and 30, and
another composed of currently elements 9 and 27. Subsequently, element 21 is subdivided
into elements 21 and 29, along with element composed currently of 25 and 30. Similarly,
element 8 is divided into elements 8 and 26, along with the element composed currently of
9 and 27.
The �rst step in the solution procedure consists then of creating �rst the data �le containing

the description of the problem domain, boundary conditions, loading and initial mesh. The
initial mesh is �rst examined to check for initially distorted elements. This mesh comes from
a CAD system, such as PATRAN or PROENGINEER. The initial mesh is then re�ned by the
adaptive remeshing scheme described above. The re�ned mesh is then submitted to the BEM
solver. In practice it is found that the quality of the initial mesh is adequate, and any initial
re�nement is not deemed necessary. This is the case, for instance, of the mesh in Figure 2
before subdivision.

3.3. Determination of local curvature

The value of the curvature at a particular location (node or element) on the free surface is
needed if surface tension is accounted for. The curvature is obviously related to the divergence
of the normal vector, n(x; y; z; t), at the location in question. Thus, the determination of the
curvature is based on the estimation of the derivative of the normal vector components in the
three directions. For this, it is convenient to de�ne local coordinates (�; 	; n) spanned by the
plane tangent to the surface at the local point and the normal to the plane.
Consider now the curvature at an element (centroid) of the discretized surface. The curvature

is estimated directly at the centroid of the element rather than on a smooth interpolated
surface going through the element vertices. Surface interpolation and �tting can be very costly.
Generally, each node of the triangle belongs to an arbitrary number of elements, and the
normal at the node is not uniquely de�ned. The normal vector is then taken as the area
average of the normal vectors to the elements to which the node belongs. The normal vector
anywhere to the element, with vertices 1, 2 and 3, may then be generally written as

n(x; t)=
3∑
i=1
ni(t)
i[�(x; t); 	(x; t)] (12)
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where ni(t) are the normal vectors at node i, and 
i(x; t) are suitably introduced interpolation
functions. In this work, given the fact that �at triangular elements are used, 
i(x; t) are
taken to be linear. The partial derivatives of the normal vector are obtained by di�erentiating
Equation (12). If the (�; 	) co-ordinate axes are taken to lie in the plane of the element, then:

∇ · n= @n�
@�

+
@n	
@	

(13)

and the curvature is just given by −∇ · n=2. This procedure is now validated by computing
the curvature for simple surfaces, discretized in triangular �at elements. Two examples are
treated, namely, the case of a spherical shell of radius equal to one, and the case of a parabolic
surface.

3.3.1. Case of a spherical surface. Two mesh sizes are considered for the sphere of radius
one. The �rst mesh consists of 72 elements and 38 nodes, and the second of 272 elements and
138 nodes. The curvature, in this case, with the normal vector pointing outward, is equal to
−1. The computed curvature for the sphere composed of 72 elements lies within the interval
[−0:912; −0:885]. The average value of the curvature is equal to −0:903, which corresponds
to a global error of 9.7%. For this mesh, the small dispersion in the numerical values of the
curvature indicates that the uniformity in the mesh is preserved. The curvature is computed at
the centroid of the elements. Given the construction of the mesh, which places the nodes on a
sphere of radius one, the centroids do not coincide exactly with the sphere. The deviation in
position between the centroids of the elements and the corresponding position on the sphere
is typically equal to 8%. This value is of the same order of magnitude as the error in the
estimation of the curvature. The results of the numerical computation of the curvature for this
mesh are thus conclusive. The uniformity of the entire mesh is preserved, and the resulting
error corresponds to that of the mesh size. This consistency is not always achieved for any
mesh as the next case shows.
The in�uence of mesh size on the computed curvature is examined by considering the mesh

of 272 elements. In this case, the computed average curvature is found to be closer to −1,
namely, −0:95. However, the di�erence between the maximum and the minimum values is
larger. The former is equal (in magnitude) to −1:25 and the latter is equal to −0:68. These
extreme values correspond to regions where the elements are not regular. A curvature can
have a magnitude that is too small, for instance, two or more elements happen to lie almost
in the same plane. The opposite is true when, for instance, the planes of two elements make
an angle of less than 90◦. These mesh irregularities do indeed happen and there is little that
can be done to control them. Localized errors can be large, exceeding 30% for a couple of
nodes in the present example. However, if the couple of irregular points are excluded, the
average error in the computed curvature is only 3%, which also corresponds to the error in
the location of the centroids of the elements relative to a sphere of radius one.
This second mesh con�rms that a good estimate of the curvature depends on two major

factors: mesh size and regularity. Obviously, a �ner mesh leads globally to an accurate estimate
of the curvature. However, strong irregularity results in large errors locally. The accuracy of
the current method hinges on the accuracy of the normal vectors at the nodes and (their
average) over each element. It is thus essential to start with an optimized original mesh.
Indeed, four mesh sizes are examined that help establish the convergence rate with mesh

re�nement. The meshes are generated with reasonable regularity. The mesh sizes considered
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Table I. In�uence of mesh size on the accuracy in estimating
the curvature for a sphere.

No. of elements Relative error Standard deviation

192 0.0302 0.0291
312 0.0175 0.0170
406 0.0148 0.0145
600 0.0125 0.0123

Table II. In�uence of mesh size on the accuracy in estimating the
curvature for a parabolic surface.

No. of elements Relative error Standard deviation

100 0.524 1.910
400 0.180 0.213
900 0.097 0.090
2500 0.046 0.044

correspond to 192, 312, 406 and 600 elements. The resulting average relative error and stan-
dard deviation for each mesh size are reported in Table I. The error and standard deviation
decrease with mesh re�nement, con�rming the convergence of the current procedure for es-
timating the curvature.

3.3.2. Case of a surface parabolic in x and y. Consider the case of the surface de�ned
over the octant x; y; z ∈ [0; 1] by the relation z=16x(x− 1)y(y− 1). Comparison between the
analytical and numerical curvatures indicates a large disparity in error. The error is found to
be much larger along the edges, especially around the corners, compared to the core region.
The mesh is not optimized along the edges. Although the mesh chosen is relatively �ne, the
discretized surface does not adhere well along the edges. As in the case of the sphere, all
nodes coincide with the analytically prescribed surface, but the deviation between the element
centroids and the surface can exceed 40% in the corner regions. The normal vectors to these
elements are thus inaccurately estimated. Consequently, the estimation of the curvature, which
is based on that of the normal vectors, is expected to be inaccurate in the corner region.
Generally, the rate of convergence with mesh re�nement is good as Table II indicates. Four

meshes are used, which consist of 100, 400, 900 and 2500 elements. Each mesh is constructed
on the basis of the imposed number of nodes along the x- and y-axis. The relative error varies
from 0.524 for the coarsest mesh to 0.046 for the �nest, and the standard deviation varies
from 1.910 to 0.044.
In conclusion, the proposed scheme for the estimation of the curvature depends strongly

on the mesh of the discretized surface. The major in�uencing factors that lead to a good
estimate are: the mesh size, the mesh regularity and a good estimate of the normal vectors to
the elements.

3.4. Contact between free surface and con�ning wall(s)

Initially, the �uid is assumed to occupy a prescribed volume, �0, which is taken as the starting
step for the computation. Typically, �0 is bounded by the wetted boundary, �w(0), and the
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free surface, �f (0). In this work, it is assumed that any part of the �uid in contact, or coming
in contact during the �ow with the cavity walls, adheres subsequently to the walls. The line
of contact between free surface and rigid boundaries is assumed to remain stationary.
The cavity walls are discretized into an appropriate number of elements that serve only to

con�ne the �uid but do not come into the �ow calculation. The number of cavity elements
can thus be arbitrarily large, leading to an accurate representation of the cavity shape. This
is particularly advantageous for practical situations where the geometry is typically complex.
Obviously, the mesh density of the wetted boundary need not match that of the surrounding
cavity. In other words, the accuracy in cavity representation is usually far superior to that
of the surface bounding the moving �uid. A node or element that comes in contact with the
wall is assumed to subsequently adhere to it. Contact is assumed to be established once the
�uid has come close to the cavity wall to within a certain distance, which is usually taken to
be of the order of an element size.
The boundary conditions imposed at a given element depend on whether the element belongs

to the free surface or the cavity. As mentioned above, initially, the domain boundary consists
of a free surface and a wetted surface. At the free surface, conditions (6) and (7) apply. The
�ow velocity is entirely speci�ed at the wetted surface. These boundary conditions remain
applicable as the �ow evolves during the early stages, until the free surface comes in contact
with the surrounding cavity wall. At the contact region, which may be simply or multiply
connected, the boundary conditions change from those on a free surface to stick conditions
at the wall.
The issue of boundary conditions at the contact line between the free surface and rigid wall

is an open one. From a modelling point of view, three types of contact condition are commonly
adopted in the region where the deforming free surface comes into contact with the solid wall.
Contact between the free surface and the wall is a curve in space for three-dimensional �ow,
and a point for two-dimensional �ow. The contact conditions are �xed contact line (point)
condition (stick condition), �xed contact angle condition (slip condition), or mixed condition
involving both �xed line (point) and angle. In general, the �xed contact line condition is
suitable for static contact lines whereas the contact angle condition is predominantly used for
moving or dynamic contact lines. Although the unsteady nature of the �ow �eld is better
accounted for using the contact angle condition, the �xed contact line condition is adopted
in the current study due to the quasi-steady assumption. More precisely, the �uids considered
here are assumed to be highly viscous, and the stick condition is likely to hold. Furthermore,
the current method can easily accommodate other conditions where the contact line is allowed
to move in a constrained or unconstrained manner. In general the speci�cation of a contact
angle is not obvious, especially under dynamic conditions, as no theory allows its prediction.
The angle is often prescribed based on experimental measurement. Please refer to the review
by Floryan and Rasmussen [8] for further discussion.

4. DISCUSSION AND RESULTS

The formulation and solution procedure are now applied for three-dimensional complex �ow
con�gurations of the moving boundary type, with emphasis on transient mixing problems. In
particular, the �ow of a �uid initially occupying a cubic, rectangular, and a cylindrical domain
will be examined. Surface tension e�ects will be explored in the latter con�guration. All prob-
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Figure 3. Transient free-surface �ow with initial square domain shown in the initial and late stages at
t=1 and 8, respectively. The �gure shows the free surface alone (a), and the full perspective (b).

The set of axes are shown detached for clarity.

lems will be discussed in the Cartesian (x; y; z) space, with (u; v; w) being the corresponding
velocity vector components. The results are reported in terms of dimensionless quantities.

4.1. Flow of a �uid initially occupying a cubic domain

Consider �rst the �ow inside a partially �lled cavity of square base of unit side (similarly to
Figure 1). The �uid is assumed to occupy initially the cubic domain (x; y; z)∈ [0; 1]× [0; 1]×
[0; 1]. The �ow is induced by the translation of the lid at z=0. The �ow is thus the transient
counterpart of typical steady lid-driven cavity �ow. The �ow is examined assuming that the
lower lid, spanning the (x; y) plane, moves at constant velocity in the x direction of unit
value. Surface-tension e�ect is neglected for this con�guration. The �uid is assumed to be
initially at rest.
Figure 3 shows the location and shape of the free surface at an early stage (t=3), and

a relatively late stage (t=12). The free surface alone is shown in Figure 3(a), and a full
perspective is shown in Figure 3(b). Note that the �ow is symmetric with respect to plane
y=0:5. Given their geometrical simplicity, the walls of the cavity need not be discretized in
this case; they serve only (together with the free surface) as limits to the �ow domain. As
the �uid deforms, mesh elements are added (removed) in regions of extension (compression),
including regions in the wall planes. The �uid is assumed to fully adhere to the walls, includ-
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Figure 4. Evolution of the maximum (a) and minimum (b) height for a �uid initially occupying a cubic
domain. The �gure shows the in�uence of the time increment.

ing the contact lines. Figure 3 clearly indicates that despite the linearity of the (inertialess)
�uid, the �ow response is non-linear with time. Indeed, a closer quantitative assessment is
inferred from Figure 4, where the evolution of the maximum height, zmax, and the minimum
height, zmin, are plotted in Figures 4(a) and 4(b), respectively. In order to assess the con-
vergence of the time-stepping scheme, several time increments are used, ranging from 0.3
to 1.5 time units. The relatively large magnitude of the time increment, �t, is an indication
of the low rate of �ow and surface deformation. Both �gures indicate the relatively slow
rate of surface movement in the early stages, eventually displaying a fast rate of growth (de-
cay) for the maximum (minimum) surface elevation. Convergence is essentially attained for
�t¡0:12.
A detailed account of the �ow is obtained upon examining the �ow �eld and free surface

movement in the (symmetric) section y=0:5, as shown in Figure 5. The �gure displays
the streamlines (Figure 5(a)), the contours of the axial velocity, u, (Figure 5(b)) and vertical
velocity, w, (Figure 5(c)). The �ow �eld in Figure 5(a) points to little change in �ow structure
as a result of the surface deformation, except in the region just below the free surface. The
�eld structure is essentially una�ected by the cutting of the free surface, except perhaps that
the �ow gradient is diminished somewhat in the left-hand region in the later stage. A more
accurate assessment is obtained from Figures 5(b) and 5(c). Figure 5(b) indicates that the
depression in the free surface has caused the axial �ow to weaken, or vanish, over a deeper
region below the free surface. There is a drop in the reverse �ow in the regions surrounding the
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Figure 5. Flow �eld in the cross-section plane y=0:5 at t=3 and 12 for a �uid ini-
tially occupying a cubic domain. The �gure shows the velocity �eld (a), contours of the

x-velocity, u, (b) and z-velocity, w (c) components.

depression. However, there is some axial �ow intensi�cation in the lower left-hand corner. The
vertical �ow also diminishes below the free surface (Figure 5(c)). There is an intensi�cation
of vertical �ow in the lower corner regions.
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Figure 6. Velocity distributions along the x direction at the free surface in the section plane
y=0:5 at various stages, for a �uid initially occupying a cubic domain. The �gure shows

(a) the x- and (b) z-velocity components.

The velocity �eld at the free surface is further appreciated from Figure 6. The distributions
of u and w at the free surface in the mid-section (y=0:5) are plotted along x in Figures
6(a) and 6(b), respectively. Both velocity components exhibit a minimum at any stage, which
strengthens with time (with surface deformation). While the minimum in w tends to remain
localized (at around 0.23), the minimum in u tends to shift toward the wall x=0, but remains
upstream of the location of the w minimum. The �gures indicate that the axial and vertical
�ows are of the same order of magnitude at any time (at least in this section, y=0:5).
The axial �ow remains negative, indicating a direction to the left of the �ow, in the (x; z)
plane. Although the downward �ow is predominant, there is a relatively weak upward �ow
for x¿0:4 that weakens with surface deformation, and eventually levels o� with time.
The overall �ow at the free surface is shown in Figure 7 at the two stages t=3 and 12.

The contours of surface elevation (Figure 7(a)), w (Figure 7(b)), u (Figure 7(c)), and v
(Figure 7(d)) are displayed. It is interesting to observe that the contours of surface elevation
do not uniformly correspond to those of the vertical velocity. This is particularly the case
at t=12. The discrepancy originates from the small non-uniformity of the vertical �ow in
the depressed region of the free surface. A similar pattern is exhibited by the u contours
(Figure 7(c)). There is essentially no axial �ow in the upper free surface region relatively
to the depressed region, especially at the later stage. In this case, the �ow is stronger in the
positive direction near the plane x=0, which is not at all evident from Figure 6(a). Indeed,
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Figure 7. Flow �eld over the free surface, for a �uid initially occupying a cubic
domain. The �gure shows the contours of the surface height (a), the z-velocity (b)

x-velocity (c) and y-velocity (d) components.

this �ow accelerates near the tip of the free surface depression. Finally, Figure 7(d) indicates
that the transverse �ow is one order of magnitude weaker initially, but becomes increasingly
stronger with surface deformation, particularly near the tip of the depression.

4.2. Flow of a �uid initially occupying a rectangular domain

Consider now the �ow of a �uid occupying initially a three-dimensional rectangular domain
with height equal to twice the side of the square base, i.e. (x; y; z)∈ [0; 1] × [0; 1] × [0; 2].
Figure 8 shows the location and shape of the free surface at an early stage (t=200), and a
relatively late stage (t=1700). The �ow is again symmetric with respect to the plane y=0:5.
The remarkable feature of this �ow, compared to that in Figure 3, is that in this case the
�ow responds with a time scale that is roughly 100 times slower than in the case of a �uid
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Figure 7. Continued.

occupying initially a cubic domain. Indeed, a closer quantitative assessment is inferred from
Figure 9, where the maximum elevation, zmax, and the minimum elevation, zmin, of the free
surface are plotted against time. The rate of �ow and surface deformation is exceedingly
slow, particularly in the early stage. The �gure indicates the relatively slow rate of surface
movement in the early and late stages, in contrast to the sharp drop displayed in Figure 4.
Note that the rate of change in surface extrema is essentially linear in the late stages. More
importantly, this rate is slow as a result of the emergence of two �ow sub-domains that are
typical of �ows in cavities of large aspect ratio (see next).
The �ow �eld and free surface shape in the section plane y=0:5 are shown in Figure 10.

The �gure displays the streamlines (Figure 10(a)), and the contours of the axial velocity, u,
(Figure 10(b)) and vertical velocity, w, (Figure 10(c)). The �ow �eld in Figure 10(a) points
to essentially no change in �ow structure as a result of the surface deformation near the bottom
base. Near the free surface, however, the vortical �ow just below the free surface tends to
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Figure 8. Transient free-surface �ow of a �uid occupying initially a rectangular domain shown in
the initial and late stages at t=200 and 1700, respectively. The �gure shows the free surface alone

(a), and the full perspective (b). The set of axes are shown detached for clarity.

Figure 9. Evolution of the maximum and minimum heights for a �uid
initially occupying a rectangular domain.
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Figure 10. Flow �eld in the cross-section plane y=0:5 at t=200 and 1700 for a �uid ini-
tially occupying a rectangular domain. The �gure shows the streamlines (a), contours of the

x-velocity (b) and z-velocity (c) components.
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Figure 11. Velocity distributions along the x direction at the free surface in the section plane
y=0:5 at various stages, for a �uid initially occupying a rectangular domain. The �gure shows

(a) the x- and (b) z-velocity components.

develop toward that encountered in lid-driven cavity �ow with no free surface (rigid upper
lid). Figure 10(b) indicates that the depression in the free surface has caused the axial �ow to
weaken, or vanish, over a deeper region below the free surface. There is a drop in the reverse
�ow in the regions surrounding the depression. The downward �ow strengthens just below
the free surface in the upper right-hand corner (Figure 10(c)). There is an intensi�cation
of vertical �ow also in the upper left-hand corner. The evolution of u and w at the free
surface are plotted along x in Figures 11(a) and 11(b), respectively. Figure 11(a) indicates
the dominance of a rightward �ow that strengthens with free surface deformation. This is in
sharp contrast with Figure 6(a), where the axial �ow is clearly to the left. The vertical �ow is
overall antisymmetric with respect to x=0:5, but somewhat less in the relatively later stages
of �ow. This is again in contrast to the previous �ow where w becomes quickly asymmetric
with respect to x=0:5 (Figure 6(b)). It is interesting to observe that the minimum in the
axial �ow occurs slightly to the right of the depression, where the minimum in the vertical
�ow occurs.
The overall �ow at the free surface is shown in Figure 12 at the two stages t=200 and

1700. The contours of surface elevation (Figure 12(a)), velocity components w (Figure 12(b)),
u (Figure 12(c)), and v (Figure 12(d)) are displayed. It is clear from Figures 12(a) and 12(b)
that the location maximum (minimum) surface elevation does not correspond to maximum
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Figure 12. Flow �eld over the free surface, for a �uid initially occupying a rectan-
gular domain. The �gure shows the contours of the surface height (a), the z-velocity

(b) x-velocity (c) and y-velocity (d) components.

(minimum) vertical velocity. This is particularly evident at t=1700. In contrast, the u contours
in Figure 12(c) indicates the culmination of axial �ow at the maximum of surface elevation.
The axial �ow is entirely in the positive direction at the free surface. Finally, Figure 12(d)
indicates that the transverse �ow is one order of magnitude weaker initially, but becomes
increasingly stronger with surface deformation, particularly near the free surface maximum
(see in contrast Figure 6(d)).

4.3. Flow of a �uid initially occupying a cylindrical domain

Consider �nally the �ow inside a long cylinder with base of unit diameter. The �uid is
assumed to occupy initially the cylindrical domain of unit height. The �ow is examined
assuming that the lower lid, spanning the unit circle in the (x; y) plane, moves at constant
velocity in the x direction of unit value. Surface-tension e�ect is neglected at �rst for this
con�guration, but it will be examined in some detail shortly. The �uid is assumed to be
initially at rest.
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Figure 12. Continued.

Similarly to Figure 3, Figure 13 shows the location and shape of the free surface at an
early stage (t=8), and a relatively late stage (t=16). The free surface alone is shown in
Figure 13(a), and a full perspective is shown in Figure 13(b). The �ow is again symmetric
with respect to the plane y=0:5. Note that, unlike the �ow inside a rectangular domain, the
time scale for the problem is of the same order of magnitude as the �ow in a cubic domain.
The non-linear character of the �ow is illustrated in Figure 14, where the evolution of the
maximum elevation, zmax, and the minimum elevation, zmin, of the free surface are plotted. Both
curves indicate the relatively slow rate of surface movement in the early stages, eventually
displaying a fast rate of growth (decay) for the maximum (minimum) height. However, the
rate of change in zmin is higher than that in zmax.
A detailed account of the �ow is obtained upon examining the �ow �eld and free-surface

movement in the (symmetric) section y=0:5, as shown in Figure 15. The �gure displays
the streamlines (Figure 15(a)), axial velocity contours (Figure 15(b)), and vertical veloc-
ity contours (Figure 15(c)). The �ow �eld in Figure 15(a) points to a more signi�cant
change in �ow structure with surface deformation than in the case of the cubic con�guration
(Figure 5) as a result of curvature e�ect from the cylinder wall. The �eld structure indi-
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Figure 13. Transient free-surface �ow of a �uid occupying initially a cylindrical domain shown in the
initial and late stages at t=8 and 16, respectively. The �gure shows the free surface alone (a), and

the full perspective (b). The set of axes are shown detached for clarity.

Figure 14. Evolution of the maximum and minimum heights for a �uid
initially occupying a cylindrical domain.
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Figure 15. Flow �eld in the cross-section plane y=0:5 at t=8 and 16 for a �uid ini-
tially occupying a cylindrical domain. The �gure shows the streamlines (a), contours of

the x-velocity (b) and z-velocity (c) components.
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Figure 16. Velocity distributions along the x direction at the free surface in the section
plane y=0:5 at various stages, for a �uid initially occupying a cylindrical domain. The

�gure shows (a) the x- and (b) z-velocity components.

cates a strengthening of the vertical �ow due to the cutting of the free-surface, especially
in the upper right-hand region. A more accurate assessment is obtained from Figures 15(b)
and 15(c). Figure 15(b) indicates that the depression in the free-surface has caused the axial
�ow to weaken, or vanish, especially just below the free surface and deeper. There is a drop
in the reverse �ow in the regions surrounding the depression. However, there is some axial
�ow intensi�cation in the lower right-hand corner and just below the lower free-surface tip.
The vertical �ow also diminishes below the free surface (Figure 15(c)). However, there is an
intensi�cation of vertical �ow in the upper left-hand corner, con�rming what is observed in
Figure 15(a).
The velocity �eld at the free surface is further appreciated from Figure 16. The distri-

butions of u and w at the free surface in the midsection (y=0:5) are plotted along x in
Figures 16(a) and 16(b), respectively. Both velocity components exhibit a minimum at any
stage, which strengthens with time (with surface deformation). The situation is similar to that
depicted from Figure 6, except that in the present case, both velocity components display a
maximum in the later stage of surface deformation, indicating a relatively abrupt surge in
upward �ow near x=0:4. While the minimum in w tends to remain localized (at around
0.23), the minimum in u tends to shift toward the wall x=0, but remains upstream of the
location of the w minimum. The �gures indicate that the axial and vertical �ows are of the
same order of magnitude at any time (at least in this section, y=0:5). The axial �ow remains
overall negative, indicating a direction to the left of the �ow, in the (x; z) plane, except at
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Figure 17. Flow �eld over the free surface, for a �uid initially occupying a cylindri-
cal domain. The �gure shows the contours of the surface height (a), the z-velocity

(b) x-velocity (c) and y-velocity (d) components.

t=16 when there is some axial movement to the right that is not evident from Figure 15(b).
Although the downward �ow is predominant, there is a relatively weak upward �ow for
x¿0:4, which in contrast to the cubic �ow tends to strengthen with surface deformation (see
Figure 6(b)).
The overall �ow at the free surface is shown in Figure 17 at the two stages t=8 and

16. The contours of surface elevation (Figure 17(a)), w (Figure 17(b)), u (Figure 17(c)),
and v (Figure 17(d)) are displayed. Figures 17(a) and 17(b) indicate that most of the verti-
cal movement of the free surface occurs along the depressed region, particularly at the later
stages. This is not exactly the case as far as the axial movement is concerned (Figure 17(c)).
There seems to be a non-vanishing extensional gradient in the upper region of the free sur-
face, which is stronger than in the case of cubic �ow (Figure 7(c)). In contrast to the �ow
in Figure 7(c), the axial �ow is dominantly positive. The transverse �ow is overall weak
as observed from Figure 17(d), but remains of the same strength as the axial �ow. This is
in sharp contrast with the cubic �ow where the transverse �ow is one order of magnitude
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Figure 17. Continued.

smaller than the axial �ow (see Figure 7(d)). It is interesting to observe from Figure 17(d)
that most of the �ow activity in the transverse is concentrated in the bottom region of the free
surface.
Finally, the e�ect of surface tension will be examined, which has been neglected so far.

It is found, and as expected, that surface tension does not bring about signi�cantly di�er-
ent qualitative behaviour. Figure 18 shows the evolution of the maximum and minimum
free surface elevations for various values of the capillary number, Ca. The curves corre-
sponding to the absence of surface tension (Ca→∞) have of course been reported earlier
but they are included here for reference. In general, surface tension tends to prohibit de-
formation. The �gure indicates that the in�uence of surface tension is linear with surface
deformation.

5. CONCLUSION

The simulation of three-dimensional transient free-surface lid-driven �ow inside cavities of
arbitrary shape is carried out for Stokes �ow. An adaptive Lagrangian three-dimensional
boundary-element approach is proposed. The mesh re�nement algorithm is simple and yet
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Figure 18. In�uence of surface tension on surface deformation for the cylindrical �ow. The �gure shows
the in�uence of the capillary number on the evolution of the maximum and minimum surface elevation.

is found to be robust and suitable for moving-free surface �ow. Three �ow con�gurations are
examined, namely when the �uid occupies initially a cubic, a rectangular and a cylindrical
domain. These �ows are evidently of close relevance to mixing. The free surface typically
exhibits a depression resulting from the vortical �ow in the core of the cavity. For the cubic
and cylindrical �ows, the free surface deforms inde�nitely, until the depressed region reaches
the bottom of the cavity. Deformation accelerates with time. For a �uid occupying initially
the cavity with 2:1 aspect ratio, surface deformation is retarded considerably, and the shape
of the free surface reaches essentially steady state.
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